Variations on a theme of Gel’fand and Năımark

نویسنده

  • Miguel Carrión Álvarez
چکیده

C ∗-algebras are widely used in mathematical physics to represent the observables of physical systems, and are sometimes taken as the starting point for rigorous formulations of quantum mechanics and classical statistical mechanics. Nevertheless, in many cases the näıve choice of an algebra of observables does not admit a C∗-algebra structure, and some massaging is necessary. In this paper we investigate what properties of C∗algebras carry over to more general algebras and what modifications of the Gel’fand theory of normed algebras are necessary. We use category theory as a guide and, by replacing the ordinary definition of the Gel’fand spectrum with a manifestly functorial definition, we succeed in generalizing the Gel’fand–Năımark theorem to locally convex ∗-algebras. We also recall a little-known but potentially very useful generalization of the Stone–Weierstrass theorem to completely regular, Hausdorff spaces. AMS Mathematics Subject Classification (2000): 46M99 (primary) 47L90 (secondary).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Тема «предопределение» в вариациях лермонтовского «Фаталиста» «The theme “predestination” in the variations of Lermontov’s “Fatalist”»

Тема «предопределение» в вариациях лермонтовского «Фаталиста» Кошемчук Татьяна Александровна Профессор кафедры лингвистики и международных коммуникаций юридического факультета Санкт-Петербургского государственного аграрного университета. Санкт-Петербург, Россия. (дата получения: март 2016 г.; дата принятия: июль 2016 г.)      Анн...

متن کامل

Boundary Regularity for the Ricci Equation, Geometric Convergence, and Gel’fand’s Inverse Boundary Problem

This paper explores and ties together three themes. The first is to establish regularity of a metric tensor, on a manifold with boundary, on which there are given Ricci curvature bounds, on the manifold and its boundary, and a Lipschitz bound on the mean curvature of the boundary. The second is to establish geometric convergence of a (sub)sequence of manifolds with boundary with such geometrica...

متن کامل

Metric Tensor Estimates, Geometric Convergence, and Inverse Boundary Problems

Three themes are treated in the results announced here. The first is the regularity of a metric tensor, on a manifold with boundary, on which there are given Ricci curvature bounds, on the manifold and its boundary, and a Lipschitz bound on the mean curvature of the boundary. The second is the geometric convergence of a (sub)sequence of manifolds with boundary with such geometrical bounds and a...

متن کامل

Construction of Gel’fand-Dorfman Bialgebras from Classical R-Matrices

Novikov algebras are algebras whose associators are left-symmetric and right multiplication operators are mutually commutative. A Gel’fand-Dorfman bialgebra is a vector space with a Lie algebra structure and a Novikov algebra structure, satisfying a certain compatibility condition. Such a bialgebraic structure corresponds to a certain Hamiltonian pairs in integrable systems. In this article, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008